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1 Theoretical Background

1.1 Angular Momentum and Torque

Figure 1: Linear momentum, position and
angular momentum vectors of a point parti-
cle rotating about z-axis.

Angular momentum is the rotational equivalent
of linear momentum in circular motions. The angu-
lar momentum of a point particle about a fixed axis
is defined as,

~J = ~r × ~P , (1)

where ~r and ~P is the position and the linear momen-
tum vectors, respectively. A visual representation
may be found in Figure (1). If the force ~F acts on
the particle, then we define the torque or moment of
force as follows,

~τ = ~r × ~F . (2)

To add another definition for the torque, now we may differentiate the angular momentum with
respect to time and this yields,

∂ ~J

∂t
=

∂~r

∂t
× ~P︸ ︷︷ ︸

~V×(m~V )=0

+~r × ∂ ~P

∂t
,

= ~r × ∂ ~P

∂t
. (3)

Here we may recall the definition of force according to Newton’s 2nd law of motion as,

~F =
∂ ~P

∂t
. (4)

Evaluating Eqn (3) and Eqn (4) together yields another definition for the torque,

~τ =
∂ ~J

∂t
. (5)

To this respect, one may define the torque as the time rate of change of angular momentum.
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Figure 2: At the moment pictured, rotation
of the body causes point p to move in a cir-
cle of radius r in a plane perpendicular to ~w.
The magnitude of ~v is v = wr sin 90◦ = wr.
and its direction is normal to the plane de-
fined by ~w and ~r. Thus ~v = ~w × ~r.

After defining the basic concepts around a rotating
point particle, now let’s consider a rigid body rotat-
ing about an axis that passes through it. Thus the
constituent elements of the body on that axis re-
main stationary, i.e. have no angular velocity. In
other words, they remain still on a fixed line in
space. Since we know somethings about the rota-
tional dynamics about a point particle, it is reason-
able to choose a very small portion of the rigid body
and examine its dynamics to investigate the motion
further. The chosen portion, i.e. a constituent el-
ement of the body, is shown in Figure (2) labeled
with point-P . I choose the projection point of the
constituent element on the rotation axis to be the
origin of my coordinate system. This way I assure
the perpendicularity of the rotation axis and the po-
sition vector (see Figure (2)). This will simplify the
calculations a little bit. And also I describe the ro-
tation by its angular velocity ~ω. Let’s focus the con-
stituent element of the rigid body at point-P of mass
m. The instantaneous velocity and acceleration of
this element is,

~v = ~ω × ~r, (6)

~a = ~α× ~r, (7)

where ~α is the angular acceleration of it. Indeed, this element contributes some angular momentum
to the total angular momentum of the body. The contribution of this element is ~r × m~v =
~r×m(~ω×~r). Recognize that the body has many other constituent elements just like we considered.
Therefore, the total angular momentum of the body may be written as the summation of the
angular momentum contributions of all of these constituent elements.

~J =
∑
i

~ri ×mi(~ω × ~ri)
1, (8)

where the index, i represents the individual constituent elements. The magnitude of the angular
momentum results in the definition of “the moment of inertia”.

J =
∑
i

mir
2
i︸ ︷︷ ︸

moment of
inertia

ω. (9)

A quick look in Figure (2) makes you realize that both of the angles required in vectorial multi-
plications in Eqn (8) are 90◦ and this is the reason we can get rid of the sinus elements originated
by the vectorial multiplications. On the other hand, it is conventional to label the rotation axis as
the z-axis of the reference frame. Therefore the moment of inertia about z-axis is,

Iz =
∑
i

mir
2
i . (10)

If we would choose infinitesimal constituent elements, their mass would be dm and the definition
given with Eqn (10) yields an integral and turns into,

Iz =

∫
r2dm. (11)

1I need to highlight that the angular velocity of the constituent elements of a rigid body is the same, of course.
Otherwise the body would break into pieces due to the rotation.
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Now we may rewrite the definitions of both the angular momentum and the torque by using the
moment of inertia, as follows.

J = Iω, (12)

τ = Iα. (13)

where α is the angular acceleration. In the experiment, we will use a cylindrical rigid body. For
this reason, the moment of inertia of a cylindrical rigid body will be evaluated as an example.

Example: Moment of Inertia of a Cylinder

Figure 3: Definition of cylindrical coordinates and an ex-
aggerated sketch for volume element in cylindrical coordi-
nates. Rigid cylindrical body is rotating around z-axis.

Let’s consider a homogeneous rigid
cylindrical body rotating around an
axis which is passing through its cen-
ter and is perpendicular to both of its
circular caps (see Figure (3)). For a
cylinder, it is obviously more conve-
nient to choose the cylindrical coor-
dinate system. To use Eqn (11), we
need an infinitesimal mass element,
dm. We may express this mass ele-
ment, dm, in terms of the density and
volume element. Volume element in
cylindrical coordinates is,

dV = rdrdφdz, (14)

where r, φ and z are the cylindrical
coordinates. The definition of them
is shown in Figure (3). To learn
more about cylindrical coordinates
and how come we end up this vol-
ume element, you may check Ref[2].
By using the density, one can write the mass element in terms of the volume element in any
coordinate system. For cylindrical coordinates, this formula is as follows,

mass = density × volume element
dm = ρrdrdφdz. (15)

where ρ is the density of the cylinder and it is,

ρ =
M

πR2L
, (16)

where M is the total mass, R is the radius and L is the length of the cylinder. By using Eqn (11),
Eqn (15) and Eqn (16), we may obtain the moment of inertial of a cylinder as follows:

Iz =

∫
r2dm

=

∫ R

r=0

∫ 2π

φ=0

∫ L

z=0

r2
M

πR2L︸ ︷︷ ︸
const.

rdrdφdz

=
M

πR2L

∫ R

r=0

r3dr

∫ 2π

φ=0

dφ

∫ L

z=0

dz

=
M

πR2L

r4

4

∣∣∣∣R
r=0

φ|2πφ=0 z|
L
z=0

=
1

2
MR2 (17)

If you wonder how we decide the limits of integrals, you should check Ref.[2], again.
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Example: System in The Experiment

Figure 4: System of a rigid cylinder ro-
tated by the puck moving downwards
on the airtable.

The system we’ll be investigating in the experiment con-
sists of two main elements. One of them is, of course, a
puck moving on the frictionless inclined plane. The other
is a rotating rigid cylinder without any friction. The puck
and the cylinder is attached to one another with an in-
elastic rope which is reeled up on the cylinder initially.
You may see a sketch of the system in Figure (4). Free
body diagram of the puck and the cylinder is shown in
Figure (5). We’ll deal with them one by one. First, we
consider the cylinder. The magnitude of the torque on
the cylinder due to the tension in the rope is,

τ = RT, (18)

Figure 5: Free body diagram for the ex-
perimental setup.

and the magnitude of the angular acceleration of the
cylinder is,

α =
a

R
. (19)

By using these two equations and Eqn (13) together, we
get,

RT = Iz
a

R
. (20)

We have found the moment of inertia of a cylinder ro-
tating around an axis passing through its center perpen-
dicular to its circular capes in Eqn (17). By using that
formula and the last equation above, we get,

T =
1

2
Ma. (21)

On the other hand, for puck the equation of motion is as follows,

mg sinα− T = ma. (22)

Please not that, here the α is the inclined plane angle, not the angular acceleration. By using Eqn
(21), we can evaluate the acceleration of the system, as follows,

a =
m

m+ M
2

g sinα. (23)
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2 Procedure

2.1 Experimental Procedure

1. Turn the airtable into an inclined plane by placing its cylindirical part under its back foot.

2. Turn on the lab table and then the airtable.

3. By using only compressor’s pedal, make sure the airtable is working.

4. If the airtable is working; turn it off. If not; contact with your lab instructor.

5. Set the frequency of the airtable to 10Hz or 20Hz and write this value down in Section 3,
Eqn (27).

6. Attach the cylindrical system on the top of the airtable.

7. Place the carbon paper onto the airtable.

8. Place the experiment sheet onto the carbon paper.

9. Arrange the 1st mass value for puck given in Table (1).

10. Hook the ring at the end of the rope of the cylinder to the puck and reel up the rope around
the gutter of the cylinder clockwise.

11. Turn on the airtable and by pushing both of the pedals, let the puck move downwards. The
movement of the puck should make the cylinder rotate. Keep pushing the pedals until all of
the rope is unwind.

12. Take the experiment sheet off of the airtable and label it with “#1”.

13. Repeat the steps 8-12 with other mass values on Table (1), label the experiment sheets with
increasing numbers.

2.2 Analysis Procedure

2.2.1 Prep work

• Measure the mass of the cylinder and note it on Eqn (29).

• By using a vernier caliper measure the radius of the cylinder. Write it down to Eqn (30).

• By using a vernier caliper measure the radius of the gutter of the cylinder and record it to
Eqn (31)2.

• Measure the mass of bare puck and write in in Eqn (32).

2.2.2 How to fill the tables

1. By examining all of the experiment sheets, decide a total interval number, n and write it
down in Eqn (28).

2. Take the experiment sheet #1. Label the experimental dots beginning with the very first
one as 0, continue with the labeling until you reach the n th dot.

3. Measure the total distance between 0th and n th dots and write it down in Table (1).

2If you take a closer look to the cylinder, you’ll see that there is a gutter on it and the rope is reeled up here.
Therefore the tension in the rope acts on the cylinder not from R but from a closer point. We call this point as
“the radius of the gutter”.
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4. Using the formula,

tn =
n

f
, (24)

calculate the total time elapsed and note it in Table (1).

5. By using the distance-time formula for the motion with acceleration with vanishing initial
position and velocity,

x(t) =
1

2
at2, (25)

calculate the experimental acceleration value and fill the related cells on Table (1) and Table
(1).

6. By using the formula Eqn (19), calculate the experimental and the theoretical angular accel-
erations and write them down on Table (1).

7. By using the percentage error formula,

P.E. = %
|athe − aexp|

athe
× 100 (26)

calculate the percentage error in the angular acceleration and write it in Table (1).

8. By using Eqn (21), calculate the tension in the rope and write it in Table (1).

9. By using Eqn (13), calculate the torque value and fill the cell in Table (1).

10. Repeat the steps 2-9 with other experiment sheets.

2.2.3 Plots & Analysis of data

We’ll plot the graph of α-τ to investigate the moment of inertia. Because if one pays attention to
Eqn (13), the slope of α-τ graph should yield the moment of inertia (see Ref[1] for more info).

1. Plot the graph of αexp-τ .

2. Calculate the slope of it. This value is your experimental value for moment of inertia of a
cylindrical object.

3. By using Eqn (17), calculate the theoretical value for moment of inertia of a cylindrical
object.

4. By using the percentage error formula, calculate the percentage error in moment of inertia.
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3 Data & Results

• The frequency:

f = Hz. (27)

• Total number of intervals:

n = . (28)

• Mass of the cylinder:

M = gr. (29)

• Radius of the cylinder:

R = cm. (30)

• Inner radius of the gutter of the cylinder:

r = cm. (31)

• Bare mass of the puck:

mbare
puck = gr. (32)

• Measurements for aexp:

• Measurements for αexp, :
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• Calculations for athe:

• Calculations for αthe:

• Calculations for P.E. of α:

• Calculations for T :
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• Calculations for τ :

• Calculations for Iexpz :

• Calculations for Ithez :
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• Calculations for P.E. of Iz:
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# aexp (cm/s2) α (rad/s2) T (dyn) τ (dyn cm)

1

2

3

4

5

Table 2: Data to plot the αexp - τ graph.
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4 Conclusions
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5 Notes
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