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1 Theoretical Background

1.1 Hooke’s Law

Figure 1: Simple spring-mass system in 1D. One
end of the spring is attached to the wall and other
end is to the mass. (a) equilibrium status. (b)

elongated spring. ~x = x̂ı and ~F = −kx̂ı (c) com-

pressed spring. ~x = −x̂ı and ~F = kx̂ı

Let’s consider a simple helical spring whose one
end attached to a wall. If the spring is released,
i.e. there is no compression or elongation then
there is no potential energy stored in the spring.
Therefore if a mass is attached to the other end
of the spring, this mass would not face any force
at all. This status is the equilibrium. But if
the spring would be compressed or elongated,
there would be some amount of potential en-
ergy in the spring proportional to the compres-
sion/elongation amount. Due to this potential
energy, the mass attached to the spring would
feel a force. This force always acts as so the po-
tential energy stored in the energy is released,
meaning pushes the mass towards the equilib-
rium point. This force is called as “Hooke’s
Law” and expressed as,

~F = −k(~r − ~r0), (1)

where k, ~r and ~r0 are the spring constant, the
position vector of the mass and the position
vector of the equilibrium point, respectively.
Spring constant is a parameter that charac-
terizes the spring. This scalar depends on the
material of the spring. We may choose our co-
ordinate system so that the equilibrium point
would be the origin of it. Then we get,

~F = −k~r. (2)

According to Newton’s 2nd law of motion for
the systems with constant mass, the net exter-
nal force on the system is proportional to its
linear acceleration,

~Fnet,ext = m~̈r∗. (3)

By using Eqn (2) and Eqn (3) together, we gain the equation of motion of a simple spring mass
system given in Figure () as follows,

~̈r +
k

m
~r = 0. (4)

∗Please remember that the acceleration is 2nd order time derivative of the position.
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If this mass is moving in only 1 direction, then the motion is 1D. Thus,

ẍ+
k

m
x = 0. (5)

Eqn (5) is a 2nd order differential equation with constant coefficients. We may propose a solution
such as,

x(t) = A cos (ωt+ φ) . (6)

Here ω is a constant of dimension Time−1. The physical meaning of this constant will be discussed
in a moment. Now, if we derivate this proposal with respect to time,

ẍ = −ω2A cos (ωt+ φ) , (7)

and substitute them into Eqn (5), we get,

ẍ+
k

m
x︸ ︷︷ ︸ = 0,

⇓

−ω2A cos (ωt+ φ) +
k

m
A cos (ωt+ φ) = 0,(

−ω2 +
k

m

)
Acos (ωt+ φ) = 0. (8)

The general solution of this equation is,

ω =

√
k

m
. (9)

This solution means that if ω is equal to the square root of spring constant over mass, then the
solution proposed in Eqn (6) is the solution of the differential equation given in Eqn (5). Please
remember that, ω is a constant of dimension 1/T ime. In physics, these kind of constants are a
type of frequency. This situation hints that ω is the angular frequency of the system and is defined
as given in Eqn 9. Therefore we have,

f =
ω

2π
, (10)

where f is the frequency of the system. Then it is,

f =
1

2π

√
k

m
. (11)

On the other hand, in general the period of a periodical motion is the inverse of its frequency,

T =
1

f
= 2π

√
m

k
. (12)

1.2 Spring-Mass System in The Influence of Gravity

Let’s consider a spring-mass system in vertical direction given in Figure (2). Whe the mass is
hanged, the influence of gravity on the mass causes the spring to elongate. Since the mass makes
no movement at this position (see Fig (2b&d)), then Newton’s 1st law of motion is valid in this
system, therefore the net force on the mass vanishes. Then we get,

Fnet = k∆l0 −mg = 0. (13)

Note that we may rewrite this formula as,

W = k∆l0, (14)

where W = mg is the weight of the mass. A simple look at this last formula should make you
realize that we may obtain the spring constant from the slope of ∆l0-W plot.
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Figure 2: Mass - spring system hanged to the
ceiling. (a) spring without mass, l0 is the relaxed
length of the spring by itself. (b) spring with
mass, l′ is the length of the spring after the mass
is hanged. The system is in a state of equilib-
rium because the weight and the spring force are
of equal size and opposite direction. This situ-
ation creates a new equilibrium point. And re-
sulting from this equilibrium, l′ is constant. (c)
spring with mass removed from the new equilib-
rium point. ∆l is the elongation from the new
equilibrium point, l is the length of the string in
this case. Note that, now the spring force dom-
inates the weight resulting as an unbalanced net
force and this triggers the mass to oscillate. Due
to this oscillation, l changes over time. (d) Free-
body diagram of the mass in Fig (2b). F ′k is spring
force, k is spring constant and ∆l0 = l′− l0 is the
amount of elongation. (e) Free-body diagram of
the system in Fig (2c). Fk is new spring force.
Under the influence of unbalanced part of this
force, the system begins to oscillate.

On the other hand, the equilibrium point of
the spring-mass system shifts from l0 to l′. We
name this point as “new equilibrium point” (see
Fig (2b)). Since this position is the new equilib-
rium, if one shifts the mass from this position,
then it would start to oscillate under the in-
fluence of unbalanced part of new spring force
(see Fig (2c&e)). The total force on this mass
is,

k(∆l0 + ∆l)−mg 6= 0. (15)

According to Newton’s 2nd Law of Motion, an
unbalanced force causes an acceleration of the
system, which is inversely proportional to its
mass. When this statement is formulated, we
get;

k(∆l0 + ∆l)−mg = −ml̈ (16)

The minus sign in this equation arises from the
fact that l tends to decrease, so its time deriva-
tive is negative. And please remember the 2nd
order time derivative of position is the acceler-
ation. Here, the position of the mass is denoted
by l.

���k∆l0 + k∆l −��mg = −ml̈,
k(l − l′) = −ml̈. (17)

This equation is a 2nd order differential equa-
tion. Let’s put this equation in order, as fol-
lows;

l̈ +
k

m
l =

k

m
l′︸︷︷︸

const.

. (18)

This equation is similar to the differential equa-
tion stated in the last experiment’s lab manual
other than the constant on the right-hand side.
We’ll try to find a way to get rid of this extra
constant. To this end, we choose to perform
following conversion.

z ≡ l − l′ ⇒ l̈ = z̈. (19)

Let’s organize Eqn (18) and rewrite it in terms
of z,

l̈ +
k

m
(l − l′) = 0

↓ ↓

z̈ +
k

m
z = 0 (20)

Please note that in the last line above, we managed to get rid of the extra constant in Eqn (18) and
Eqn (20) is the same differential equation from the last experiment. And, naturally, we propose a
similar solution,

z(t) = A cos (ωt+ φ) ,

z̈(t) = −ω2A cos (ωt+ φ) .
(21)
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Here ω is a constant of dimension Time−1 and φ is a dimensionless constant. Then we get,(
−ω2 +

k

m

)
A cos (ωt+ φ) = 0. (22)

As we discussed in the lab, the general solution of this equation is,

ω =

√
k

m
. (23)

Now let’s write the solution for l, as,

l(t) = A cos

(√
k

m
t+ φ

)
+ l′ (24)

Notice that the ω is the angular frequency and φ is the phase of this system. Angular frequency
measures angular displacement per unit time. Now, we need to apply the initial conditions in order
to find A. See from Figure (2c) that the initial position of the mass is l′+ ∆l. And, as soon as the
mass is released it moves in a way to decrease this initial elongation. In other words, position is
in its maximum value at the beginning. Thus the movement begins at the maximum value of the
cosine function, i.e. the phase is 0. Then,

l(0) = Acos (ω0 + 0)︸ ︷︷ ︸
=1

+l′ = l′ + ∆l ⇒ A = ∆l (25)

∆l is the amplitude of this movement and we may rename ∆l as L0 for the sake of simplicity. All
in all, the position of the mass in this system is,

l(t) = L0 cos

(√
k

m
t

)
+ l′, (26)

in terms of the time spent during the movement.
We have discussed in the last experiment’s lab manual that the frequency is,

f =
1

2π
ω, (27)

then the frequency of this system is,

f =
1

2π

√
k

m
, (28)

and it’s period is,

T = 2π

√
m

k
. (29)

Same in the last experiment, we will investigate the behavior of the period due to the changes in
some other physical quantities, such as the mass, the spring constant, etc.

2 Procedure

2.1 Experimental Procedure

Part A: Determination of Spring Constant

1. By using the hook apparatus, hang the spring to the air pipe of the airtable.

2. Using a ruler, measure the relaxed length of the spring and note it in Eqn (34).

3. Hang the mass #1 from Table (1) to the end of the spring by a hanger. With this effect the
system will make small oscillations, wait until the system settles down.

4. With a ruler, measure l′ and write it in Table (1).

5. Repeat steps 3&4 with other mass values from Table (1).
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Part B: Effect of Mass on The Period

1. By using the hook apparatus, hang the spring to the air pipe of the airtable. There should
be a sticker attached to the spring. Read the spring constant from it and note this value in
Eqn (35).

2. Determine an amount for the amplitude, 1-2cm, and not it in Eqn (36).

3. Hang the mass #1 from Table (2) to the end of the spring by a hanger. With this effect the
system will make small oscillations, wait until the system settles down.

4. Set your timer.

5. Pull the mass downwards as the amount of the amplitude you have determined by hand.
This amount should be same throughout this part.

6. As soon as you let go the mass, start the timer and begin to count the oscillations.

7. Count until you reach the end of the 10th oscillation and stop your timer at this time.

8. Record your time value in Table (2).

9. Repeat steps 3-8 with other mass values from Table (2).

Part C: Effect of Spring Constant on The Period

1. By using the hook apparatus, hang the spring to the air pipe of the airtable. There should
be a sticker attached to the spring. From it, read the spring constant and note this value on
Table (3).

2. Hang the mass of 110gr to the end of the spring by a hanger. With this effect the system
will make small oscillations, wait until the system settles down.

3. Set your timer.

4. Pull the mass 1-2cm downwards by hand. This amount should be same throughout this part.

5. As soon as you let go the mass, start the timer and begin to count the oscillations.

6. Count until you reach the end of the 10th oscillation and stop your timer at this time.

7. Record your time value in Table (3).

8. Repeat steps 1-7 with three more springs. Select the springs with different spring constants.

Part D: Effect of Amplitude on The Period

1. By using the hook apparatus, hang the spring to the air pipe of the airtable. There should
be a sticker attached to the spring. From it, read the spring constant and note this value on
Eqn (40).

2. Hang the mass of 110gr to the end of the spring by a hanger. With this effect the system
will make small oscillations, wait until the system settles down.

3. Set your timer.

4. Pull the mass downwards by hand as the amount#1 from Table (4).

5. As soon as you let go the mass, start the timer and begin to count the oscillations.

6. Count until you reach the end of the 10th oscillation and stop your timer at this time.

7. Record your time value in Table (4).

8. Repeat steps 3-7 with the second amount for the amplitude from Table (4).
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2.2 Analysis Procedure

How to Fill Table (1)

• Calculate the weight of the mass and write it under the column of W on Table (1).

• Bu using the equation,

∆l0 = l′ − l0, (30)

calculate the elongation in the spring and write in down in Table (1).

How to Fill Table (2-3-4)

• Divide the 10Texp values you have measured by 10 and calculate the Texp values. Write them
in the relevant cell.

• By using the Eqn (29), calculate the Tthe and write them in tables.

• By using the percentage error formula,

P.E. =
|Tthe − Texp|

Tthe
× 100, (31)

calculate the percentage errors in period values and note them in tables.

• Calculate the square values of the Texp and write them in the relevant cells.

• Exception: Only for Table (3), calculate the inverse of spring constants and write them on
Table (3).

Plot of Part A

According to the Eqn (14), the slope of the graph of elongation-weight should yield the spring
constant.

• Plot ∆l0-W graph.

• Calculate the slope of this graph.

• By using the percentage error formula,

P.E. = %
|kthe − kexp|

kthe
× 100, (32)

calculate the percentage error in the spring constant. Take the value from the sticker attached
to the spring as the theoretical value.

Plot of Part B

Remember the Eqn (29), period is proportional to the square root of the mass. Thus if you plot
the graph of m-T , it will not be linear. So we need the same old trick,

T = 2π

√
m

k
⇒ T 2 = 4π2m

k
. (33)

It is clear from the equation above that the plot of m-T 2 will be linear and the slope of this graph
should yield 4π2/k.

• Plot m-T 2 graph.

• Calculate the slope of this graph. By using this value evaluate the experimental value for
spring constant.

• By using Eqn (32), calculate the percentage error in the spring constant. Take the value
from the sticker attached to the spring as the theoretical value.
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Plot of Part C

Same in previous part, graph of k-T is not linear. You can see from Eqn (33) that we may plot
k−1-T 2 graph which is linear. It is clear from the Eqn (33) the slope of this graph should yield
4π2m.

• Plot k−1-T 2 graph.

• Calculate the slope of this graph. By using this value evaluate the experimental value for
the mass.

• By using Eqn (32), calculate the percentage error in the mass.

3 Data & Analysis

Part A: Determination of Spring Constant

• Relaxed length of spring

l0 = cm. (34)

# m (gr) W (dyn) l′ (cm) ∆l0 (cm)

1 110

2 120

3 130

4 140

5 150

Table 1: Data for determination of spring constant
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Part B: Effect of Mass on The Period

• Spring constant:

k = dyn cm−1. (35)

• Amplitude:

∆l = cm. (36)

# m (gr) 10Texp (sec) Texp (sec) Tthe (sec) P.E. T 2
exp (sec2)

6 110 %

7 120 %

8 130 %

9 140 %

10 150 %

Table 2: Data for Effect of Mass on The Period
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Part C: Effect of Spring Constant on The Period

• Mass of the body:

m = gr. (37)

• Amplitude:

∆l = cm. (38)

# k
(dyn cm−1)

k−1

(dyn−1 cm)
10Texp (sec) Texp (sec) Tthe (sec) P.E. T 2

exp (sec2)

11 %

12 %

13 %

14 %

Table 3: Data for Effect of Spring Constant on The Period

Part D: Effect of Amplitude on The Period

• Mass of the body:

m = gr. (39)

• Spring constant:

k = dyn cm−1. (40)

# ∆l (cm) 10Texp (sec) Texp (sec) Tthe (sec) P.E. T 2
exp (sec2)

15 2 %

16 4 %

Table 4: Data for Effect of Amplitude on The Period
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