EXPERIMENT.5

LIGHT THROUGH A PARALLEL SIDED BLOCK

Goal: Observing of refraction of light in parallel sided block and measuring amount of shift.

Theory:

If a parallel sided block which has n_2 refraction index in an ambient that has n_1 refraction index, incident ray that has i_1 angle between normal, refracts two times as when it enters and exits from matter.

Figure 5.1

Snell law for incoming and outgoing rays:

$$n_1 \sin i_1 = n_2 \sin i_2$$

For outgoing:

For incoming:

$$n_2 \sin i_3 - n_1 \sin i_4$$

Using these two equations above, we can easily find that $\sin i_1 - \sin i_4$ and so $i_1 - i_4$. This equation shows that incoming and outgoing rays are parallel to each other. If we want to find amount of parallel shift(d) using trigonometric equations;

$$\cos i_2 = \frac{L}{AB}$$
, and $\sin(i_1 - i_2) = \frac{d}{AB}$.

 $d = AB\sin(i_1 - i_2) = \frac{L}{\cos i_2}\sin(i_1 - i_2)$ and finally the amount of parallel shift is:

$$d = L \frac{\sin(i_1 - r_1)}{\cos r_1} \tag{1}$$

Experimental Setup:

Apparatus:

- 1.) Light source
- 2.) Parallel sided glass block
- 3.) Millimetric paper
- 4.) Goniometer

EXPERIMENTAL SETUP AND MEASUREMENTS:

Measurements:

- 1.) Draw three figures that illustrate shape of parallel sided glass block on millimetric paper.
- 2.) Set incoming angles as 30,50 and 70.
- 3.) Draw way of outgoing ray.
- 4.) Measure refraction angles using goniometer and check that your values obtain snell law.
- 5.) Calculate amount of parallel shift (d) using formula (1).

$$L_1 =cm$$

N	i_1	i_2	i_3	i_4	$d_{\rm exp}$ (cm)	d_{theo} (cm)
1	30 °					
2	50°					
3	70 °					

$$L_2 =cm$$

N	i_1	i_2	i_3	i_4	$d_{\rm exp}$ (cm)	d_{theo} (cm)
4	30 °					
5	50°					
6	70 °					

$$L_3 = \dots...cm$$

N	i_1	i_2	i_3	i_4	$d_{\rm exp}$ (cm)	d_{theo} (cm)
7	30 °					
8	50°					
9	70 °					

-	\sim 1			
Error	()	cm	13tı	On:
LIIUI	uai	ıcuı	ıau	VII.

- 1.) Compare theorical and experimental value of parallel shift and calculate percentage error.
- 2.) Find maximum absolute error of any of your measurement.
- 3.) Write probable error sources.

Conclusions and comments:

Write your conclusions and comments about the experiment.

CVD	CDIMENT	CI	ICUT	TUDALICU	Λ	PARALLEL	CIDED	DI OCV.
LAF	CKIMENI.	JO L	IUUI	INKUUUN	А	PARALLEL	SIDED	DLUCK:

I .	